sair bem - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

sair bem - tradução para russo

Bem-ordenada; Bem-ordenado; Bem ordenado; Bem ordenada; Relação bem ordenada; Conjunto bem-ordenado

sair bem      
удаться, дать хороший результат
sair bem      
удаться, дать хороший результат
bens         
PÁGINA DE DESAMBIGUAÇÃO DA WIKIMEDIA
Bem Jurídico; Bens; Bem (desambiguação); BEM
имущество, собственность

Definição

bem
pref (lat bene) Exprime a idéia de bondade, simpatia, alto grau: bem-amado, bem-acabado, bem-estar. Equivalente: ben-: benfeitor, benquisto
sm (lat bene)
1 Tudo o que é bom ou conforme à moral.
2 Benefício.
3 Virtude.
4 Pessoa amada.
5 Proveito, utilidade.
6 Propriedade, domínio
Bem de família: prédio que o chefe de família destina a domicílio desta, enquanto viverem os cônjuges e até que os filhos completem sua maioridade, com a cláusula de ficar isento de execução por dívidas, salvo as que provierem de impostos relativos ao mesmo imóvel.
adv (lat bene)
1 De modo bom e conveniente.
2 Assaz, extremamente, muito.
3 Com afeição.
4 Com saúde.
5 Com certeza, quase com certeza
Bem como: assim como, do mesmo modo que
Bem entendido: certamente, sem dúvida
Bem entendido que: com a condição de que, decerto que.

Wikipédia

Relação bem-ordenada

Na matemática, uma relação bem-ordenada (ou boa-ordenação) em um conjunto S é uma ordenação total em S com a propriedade de que todo subconjunto não-vazio de S possui um elemento mínimo na ordenação. O conjunto S juntamente com a relação bem-ordenada é chamado de conjunto bem-ordenado.

Todo elemento s, exceto um possível elemento máximo, tem um único sucessor (próximo elemento) a saber, o elemento mínimo do subconjunto de todos os elementos maiores que s. Todo subconjunto que possui um limitante superior possui um supremo. Podem existir elementos (além do elemento mínimo) que não possuem predecessores.

Se ≤ é uma (não-estrita) boa-ordenação, então < é uma boa-ordenação estrita. Uma relação é uma boa-ordenação estrita se e somente se ela for uma ordenação total estrita bem-fundada. A diferença entre boas-ordenações estritas e não-estritas é frequentemente ignorada, uma vez que elas são facilmente interconversíveis.

Se um conjunto é bem-ordenado (ou até se ele meramente admite uma relação bem-fundada), a técnica de prova de indução transfinita pode ser usada para provar que uma dada sentença é verdadeira para todos os elementos do conjunto.

A observação de que os números naturais são bem-ordenados através relação menor que, é comumente chamada de princípio da boa-ordenação (para números naturais).

O teorema da boa-ordenação, que é equivalente ao axioma da escolha, afirma que todo conjunto pode ser bem-ordenado. O teorema da boa-ordenação também é equivalente ao lema de Kuratowski-Zorn.